Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities

Funding: Genomic Science Program DE-SC0008834

Background:
Biochemical carbon-concentrating mechanisms such as Crassulacean acid metabolism (CAM) represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. This work reviews progress in modelling plant photosynthesis with advances in synthetic biology and proposes novel approaches to metabolic engineering efforts to improve photosynthetic efficiency.

Approach:
• Modelling photosynthesis will play a principal role in improving scientific understanding of regulatory mechanisms used to accelerate targeted genetic manipulation.
• The availability of synthetic elements controlling light-mediated responses, transcription factor–DNA binding, and protein domains for subcellular localization and controlled degradation; and rapid and reliable in vitro cloning technologies, will improve future synthetic biology endeavors.

Significance:
• Photosynthesis is potentially the most powerful and sustainable energy conversion machine on earth, and is a compelling target for improving the properties of plants as sources of food, feed, fiber, and fuel.
• The custom design, engineering, and construction of photosynthetic mechanisms through synthetic biology is now potentially achievable.
• Exploration of genomics and functional genomics into the understudied molecular and biochemical basis of the CAM domain may open a new door to genetic improvement in water use efficiency (WUE) in bioenergy crops.

Contact: Xiaohan Yang, 865.241.6895, yangx@ornl.gov

cambiodesign.org